Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463976

ABSTRACT

PDZ domain mediated interactions with voltage-gated calcium (Ca V ) channel C-termini play important roles in localizing and compartmentalizing membrane Ca 2+ signaling. The first such interaction discovered was between the neuronal multi-domain protein Mint-1, and the presynaptc calcium channel Ca V 2.2 in mammals. Although the physiological significance of this interaction is unclear, its occurrence in vertebrates and bilaterian invertebrates suggests important and conserved functions. In this study, we explore the evolutionary origins of Mint and its interaction with Ca V 2 channels. Phylogenetic and structural in silico analyses revealed that Mint is an animal-specific gene, like Ca V 2 channels, which bears a highly divergent N-terminus but strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. Also deeply conserved are other Mint interacting proteins, namely amyloid precursor and related proteins, presenilins, neurexin, as well as CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast 2-hybrid and bacterial 2-hybrid experiments, we show that Mint and Ca V 2 channels from cnidarians and placozoans interact in vitro , and in situ hybridization revealed co-expression of corresponding transcripts in dissociated neurons from the cnidarian Nematostella vectensis . Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis was able to strongly bind the divergent C-terminal ligands of cnidarian and placozoan Ca V 2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore Ca V 2 channel C-terminus. Altogether, our analyses provide a model for the emergence of this interaction in early animals first via adoption of a PDZ ligand by Ca V 2 channels, followed by sequence changes in the ligand that caused a modality switch for binding to Mint.

2.
Commun Biol ; 6(1): 951, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723223

ABSTRACT

ASIC channels are bilaterian proton-gated sodium channels belonging to the large and functionally-diverse Deg/ENaC family that also includes peptide- and mechanically-gated channels. Here, we report that the non-bilaterian invertebrate Trichoplax adhaerens possesses a proton-activated Deg/ENaC channel, TadNaC2, with a unique combination of biophysical features including tachyphylaxis like ASIC1a, reduced proton sensitivity like ASIC2a, biphasic macroscopic currents like ASIC3, as well as low sensitivity to the Deg/ENaC channel blocker amiloride and Ca2+ ions. Structural modeling and mutation analyses reveal that TadNaC2 proton gating is different from ASIC channels, lacking key molecular determinants, and involving unique residues within the palm and finger regions. Phylogenetic analysis reveals that a monophyletic clade of T. adhaerens Deg/ENaC channels, which includes TadNaC2, is phylogenetically distinct from ASIC channels, instead forming a clade with BASIC channels. Altogether, this work suggests that ASIC-like channels evolved independently in T. adhaerens and its phylum Placozoa. Our phylogenetic analysis also identifies several clades of uncharacterized metazoan Deg/ENaC channels, and provides phylogenetic evidence for the existence of Deg/ENaC channels outside of Metazoa, present in the gene data of select unicellular heterokont and filasterea-related species.


Subject(s)
Placozoa , Animals , Placozoa/genetics , Phylogeny , Protons , Acid Sensing Ion Channels/genetics , Amiloride
3.
J Biol Chem ; 298(4): 101741, 2022 04.
Article in English | MEDLINE | ID: mdl-35182524

ABSTRACT

CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage-activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.


Subject(s)
Calcium Channels , Calmodulin , Evolution, Molecular , Placozoa , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Feedback, Physiological , Placozoa/classification , Placozoa/genetics , Placozoa/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...